您当前的位置 :环球传媒网>信息 > 正文
新型磁性半导体为反常霍尔效应(AHE)提供新视角
2021-12-29 23:06:47 来源:cnBeta.COM 编辑:

科学家将这种现象命名为"反常霍尔效应"(AHE),它似乎是霍尔效应的一个近亲。然而,它的机制要更复杂一些。目前,最被接受的一种说法是,AHE是由电子能带的一种被称为"贝里曲率"的特性产生的,它是由电子的自旋和它在材料内部的运动之间的相互作用产生的,更常见的是"自旋-轨道相互作用"。

磁性排序对AHE来说是必要的吗?最近的一个理论表明并非如此。"理论上已经提出,即使在磁秩序消失的温度以上,也有可能出现大的AHE,特别是在具有低电荷载流子密度、电子间强交换作用和有限自旋手性的磁性半导体中,这与自旋方向相对于运动方向有关,"东京工业大学(Tokyo Tech)的副教授内田博士解释说,他的研究重点是凝聚态物理。

出于好奇,内田博士和他在日本的合作者决定对这一理论进行测试。在《科学进展》上发表的一项新研究中,他们研究了一种新的磁性半导体EuAs的磁特性,该材料只知道有一个奇特的扭曲三角形晶格结构,并观察到23K以下的反铁磁(AFM)行为(相邻的电子自旋排列在相反的方向)。此外,他们观察到,在有外部磁场的情况下,该材料的电阻随温度急剧下降,这种行为被称为"巨大的磁电阻"(CMR)。然而,更有趣的是,CMR甚至在23K以上也被观察到,在那里AFM的秩序消失了。人们很自然地理解,在EuAs中观察到的CMR是由稀释的载流子和局部Eu2+自旋之间的耦合引起的,这种耦合在很大的温度范围内持续存在。

然而,真正夺人眼球的是霍尔电阻率随温度的上升,它在70K的温度下达到顶峰,远远高于AFM排序温度,这表明在没有磁性排序的情况下,大型AHE也是可能的。为了了解是什么导致了这种非常规的AHE,研究小组进行了模型计算,结果显示,这种效应可以归因于三角晶格上的自旋簇对电子的倾斜散射,在这种"跳跃制度"下,电子不流动,而是在原子之间"跳跃"。

这些结果使我们在理解磁性固体内部电子的奇怪行为方面更近了一步。新发现有助于阐明三角晶格磁性半导体,并有可能打开一个新的研究领域,即针对稀释的载流子与非常规的自旋有序性和波动的耦合。

关键词: 科学探索 新型磁性半导体为反常霍尔效应(AHE)提供新视角

分享到:
版权和免责申明

凡注有"环球传媒网"或电头为"环球传媒网"的稿件,均为环球传媒网独家版权所有,未经许可不得转载或镜像;授权转载必须注明来源为"环球传媒网",并保留"环球传媒网"的电头。